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ABSTRACT 1 

In this study, we developed a macroscopic analytical model for modeling the vehicle-to-vehicle 2 

(V2V) communication process. The proposed information propagation methodology is based on 3 

the Susceptible-Infected-Removed (SIR) model that is used to represent the spread of epidemics 4 

in a fixed region analytically. The enhanced version of this epidemic model with the addition of 5 

exposed class is used to replicate the information dissemination in connected vehicle (CV) 6 

environments. The proposed analytical model predicts the time it takes to inform all vehicles 7 

present on the given roadway. The model is developed in a way that it can adapt to a variety of 8 

connected vehicle market penetration levels. Finally, it is validated using simulation results 9 

obtained from a calibrated model coded using PARAMICS, traffic micro-simulation software. 10 

The results showed that the analytical model could accurately predict the contact rate of infected 11 

nodes which explains how fast the information will dissipate in dense urban conditions. 12 

 13 

Connected Vehicles, Epidemic Models, SIR, SEIR, Micro-simulation, V2V, Wireless 14 

Communication, DSRC 15 
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INTRODUCTION 1 

Information dissemination is a powerful and fundamental social process in modern societies. The 2 

most of the technological infrastructures have been developed to provide a platform to 3 

communicate various types of information in the last couple of decades. Recent advances in 4 

Intelligent Transportation Systems have been stimulated in order to adapt emerging trends and 5 

increasing volumes of disseminated information between vehicles and infrastructure. Vehicle-to-6 

vehicle (V2V) communications technologies in a Connected Vehicle (CV) environment can 7 

deliver a data-rich platform for travelers based on information anonymously transmitted from 8 

vehicles without any infrastructure requirements. The dynamics of traffic flow, inter-vehicle 9 

communication protocol, and dissemination of information are the three underlying factors of the 10 

V2V based communication. Various analytical and simulation models have been developed for 11 

the propagation of information in recent years (1; 2).  Although such models are very well 12 

defined, they require significant effort for the development and calibration and also are 13 

computationally very expensive. Thus, it is a real challenge to use them for multiple scenario 14 

evaluation studies especially if these studies require quick response times.  As an alternative, few 15 

studies attempted to model the spread of information from the vehicle to vehicle using an 16 

approach analogous to spread of infection in an epidemic (3-6). The primary objective of these 17 

studies was to use an epidemic model to analytically capture the dynamics of information flow in 18 

CV environments. The idea of the basic Susceptible-Infected-Removed (SIR) model is first 19 

introduced by Kermack and McKendrick (7). In this macroscopic model, a population is 20 

composed of three groups of individuals: susceptible (S), infectious (I) and recovered (R). In the 21 

literature, this epidemic model is used to analytically estimate the number of informed vehicles 22 

in a CV environment. The SIR model is enhanced by incorporating an exposed class E (8). 23 

TABLE 1 below illustrates the variables in the epidemic model and its corresponding variables 24 

in traffic. 25 

TABLE 1 Epidemic Model Variables and its Corresponding Variables in Traffic 26 

Description Epidemic Model 

Variables 

Corresponding Traffic 

Variables 

Total Population N Total number of CVs 

Susceptible Population S  CVs that can potentially receive 

information from other vehicles 

in traffic 

Exposed Population E  CVs that receive the 

information but cannot transmit 

it to other vehicles until the 

next time step  

Infected Population I   CVs with information to be 

transferred 

Recovered R  CVs that receive the critical 

information and that are 

removed from the network 

The exposed class corresponds to the vehicles which received the information, but they 27 

are not immediately ready to transmit it to the other vehicles until the next time step. The SEIR 28 

model can be mathematically represented as: 29 



Kurkcu, Ozbay  4 

 

/

/

S
IS N

t

E
IS N gE

t

I
gE mI

t

R
mI

t






= −




= −




= −




=



  (1) 

where m is the recovery rate of infected individuals,   is the effective per capita contact rate and 1 

the incidence rate that makes susceptible vehicles infectious is /IS N  , and g is the rate at 2 

which the exposed nodes become infected (Thus, the mean infectious period is 1/g). To 3 

generalize the model for various population sizes, it is normalized according to s = S/N, e = E/N, 4 

i = I/N, and r = R/N (8): 5 

'

'

'

'

s is

e is ge

i ge mi

r mi





= −

= −

= −

=

 (2) 

In the SEIR model, the population size is constant, and there is no heterogeneity. This 6 

approach fails to explain the vehicle dynamics in traffic flow as well as the interactions between 7 

vehicles on different density levels. The market penetration level of CVs plays a crucial role in 8 

CV applications and information propagation. Therefore, the SEIR model can be improved by 9 

introducing a new density based per capita contact rate. This rate relies on the vehicle density 10 

and traffic speed. This study aims to model the effects of the market penetration on information 11 

propagation in CV environments by fusing microscopic traffic behavior with macroscopic 12 

analytical models. The proposed approach provides an analytical model to estimate a density-13 

based contact rate ( density dependent − ) by utilizing the traffic dynamics to improve macroscopic 14 

models for dense urban scenarios.  15 

Current simulation-based approaches not only require longer time intervals to execute 16 

and instantaneous information collected from vehicles at every time step but also coding of the 17 

target network to run simulations. To address these limitations and provide a faster estimation of 18 

information flow in urban scenarios, this study proposes an analytical model to investigate 19 

information propagation by integrating a density base contact rate to the epidemic model. This 20 

addition results in better understanding of the relationship between traffic density and 21 

information dissemination and the analytical model enables a faster analysis of information flow 22 

in CV applications. The rest of this paper is organized as follows. In section 2, the existing 23 

literature about epidemic models in information dissemination is explained, while in Section 3, 24 

an analytical approach for describing density-dependent epidemic information dissemination 25 

model is presented. The proposed model is evaluated and analyzed in Section 4. Finally, the last 26 

section summarizes the contribution of the paper and discusses the future work. 27 

 28 

LITERATURE REVIEW 29 

One of the most demanding problems in wireless networks is the capability to discern network 30 

behavior and evaluate their performance in large-scale scenarios in which a large a number of 31 

nodes need to interact with each other. In these cases, simulations and emulations of actual 32 
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systems become useful since the deployment of real systems is costly and not practical. 1 

However, even using the calibrated simulation models may be computationally expensive due to 2 

the high system complexity in such scenarios. Therefore, analytical models can fill the gap of the 3 

tools that are required to understand the network behavior and conduct performance assessments. 4 

Information propagation modeling in wireless networks has attracted the considerable attention 5 

from the researchers in recent years (3; 4; 9; 10).  6 

 In the transportation domain, information dissemination models can be used to 7 

understand the information flow in CV environments. Indrakanti, Ozbay and Mudigonda (6) are 8 

one of the first to propose a macroscopic analytical approach to model the V2V communication 9 

process using a spread of infection models. The proposed model was based on the SIR model, 10 

and it predicted the number of infected (informed) vehicles on the roadway at any time for a 11 

combination of the number of lanes, speed limits, flows and market penetrations. The 12 

comparison of the numerical model and the simulation model was executed using PARAMICS 13 

microsimulation tool. The results showed that the number of infected and uninfected vehicles 14 

fluctuated over time and the fluctuation oscillates between an absolute maximum and a minimum 15 

value. Wu, Fujimoto and Riley (2) presented an analytical model to understand the spatial 16 

propagation of information in V2V networks. They investigated the average delay in transferring 17 

a message from one location to the other with one-way vehicle traffic. Two different models 18 

were proposed to explain message propagation under sparse and dense network conditions. The 19 

validation of the models was done through two simulations. The first one considered undisturbed 20 

vehicle traffic model and the second one was controlled by a microscopic traffic simulator 21 

CORSIM (11). The results from simulations illustrated that the speed of the propagation was 22 

faster than what models predicted. The relative errors of the predicted propagation speed were 23 

between 10% and 20%. 24 

 Islam et al. (12) proposed analytical models to explain data dissemination in the wireless 25 

mobile network. They considered both the single and multiple object diffusion processes in 26 

wireless networks and presented analytical models explaining each approach. Epidemic-based 27 

data propagation system was used as a Markov process to model the behavior of the scheme. 28 

Their model contained a contention rate among the communicating nodes when multiple ones try 29 

to broadcast data simultaneously.  The model results were compared against simulated results 30 

with a discrete event simulator written in C++. For single and multiple object diffusion, the 31 

results showed that analytical results and simulated results match with close proximity. They 32 

concluded that message propagation rate experienced a phase transition as a function of node 33 

density, radio range, and speed in a wireless network. 34 

 Kim, Peeta and He (13) suggested a macroscopic model to take traffic flow dynamics and 35 

communication constraints into consideration when determining the information flow 36 

propagation wave speed.  The solution obtained by the proposed model was its closed-form 37 

solution of wave speed which relies on the density, communication frequency, and shape of the 38 

communication kernel that describes the success rate of communications. The results were 39 

validated against simulated results using a Cell Transmission Model (CTM). The experiment 40 

simulation network was 30 km with homogeneous section characteristics. The time interval for 41 

the simulation was 0.5 seconds. The results showed that the wave speeds increase as the density 42 

of traffic flow increases and analytical results fit the speeds generated by the simulated 43 

experiments. As the following study, Kim, Peeta and He (14) integrated an epidemic model to a 44 

CTM based traffic flow model to understand single hop dynamic information flow propagation. 45 

To model the success rate of vehicle communication, a simulation-based approach was used.  46 
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They again compared model results with simulated results obtained from a network consisting of 1 

200 cells that were equivalent to 22 miles of highway. The assumptions about traffic flow 2 

remained the same. However, they investigated uni and bi-directional highways under different 3 

market penetration rates in this study. A roadway incident was also simulated to understand the 4 

effects of a non-uniform traffic stream. The results pointed out that the analytical formulation 5 

overestimated of the propagation of wave speed only under sparse density conditions.  6 

Although using simulation the realistic vehicular traffic pattern can be captured, most 7 

papers in the literature fail to report how many runs were actually executed to obtain simulated 8 

results. Jin and Recker (1) presented an analytical model for multi-hop connectivity of vehicle 9 

communication systems. The model assumed that the vehicles’ positions were all known through 10 

observations. Their model also replicated the stochastic nature of traffic and did not require 11 

repeating traffic simulations. A scenario with only one way traffic and a higher market 12 

penetration level was analyzed without any effect of merging and diverging vehicles in the study. 13 

The results showed that the arbitrary distribution of vehicles dramatically affects the 14 

performance of communication. Knowing the exact locations of all vehicles, the model was able 15 

to estimate multi-hop connectivity at any time point between nodes. 16 

Goscé, Barton and Johansson (5) showed an approach that analytically improves current 17 

disease spreading models. The spread of disease rely on the crowd behavior, and the contact rate 18 

is a fundamental parameter in their study. Therefore, they proposed a method that analytically 19 

calculates the contact rate using the local crowd density within a corridor and compared the 20 

model’s outcomes with an agent-based simulation. The results of the study showed that such 21 

contact rate varies significantly depending on the crowd density in the studied environment and 22 

current models may give significant over or underestimations of the spread of disease in 23 

particular density conditions. The second part of the book written by Chiasserini, Gribaudo and 24 

Manini (15) talks about broadcasting safety messages in a CV environment. It explains a 25 

stochastic analytical model for message dissemination and channel access mechanisms for multi-26 

hop broadcasting in depth. A similar dissemination methodology where the information is first 27 

sent to the furthest available vehicle is adopted in this study. Their approach also considers the 28 

message block probability and transient system behavior which assures the viable information 29 

exchange of the networks. The next section will explain the proposed analytical model to 30 

calculate a density-dependent contact rate in detail. This contact rate is analogous to the one 31 

suggested by (5), however, the local density is calculated using an approach derived from the 32 

two-fluid theory (16). 33 

STUDY APPROACH 34 

Analytical Model for Urban Arterials   35 

As Goscé, Barton and Johansson suggested in their paper where they analytically modeled the 36 

spread of disease in confined and crowded spaces (5), this study attempts to take traffic density 37 

and dynamics into account while calculating the contact rate based on the variables of an 38 

epidemic model. This section explains the proposed analytical method to calculate an improved 39 

density based contact rate. Two-fluid theorem (17) is utilized to calculate the spatiotemporal 40 

distribution of the local density which is required to find the number of vehicles in the infection 41 

radius in an urban scenario. Two-fluid theorem suggests that the average speed relies on the 42 

faction of the cars that are stopped. The theory uses the ratio of the total time that probe vehicle 43 

was stopped to its travel time to find the average fraction of vehicles stopped. The average speed 44 

can be predicted using this fraction. Given the fundamental relationship proposed by Pipes (18), 45 

traffic density can also be estimated. More details about this estimation approach can be found in 46 



Kurkcu, Ozbay  7 

 

(16). The proposed contact rate can be introduced to the SEIR model to more accurately estimate 1 

the number of infected (informed) vehicles in a network. Goscé, Barton and Johansson (5) 2 

showed that the rate of infection and node speed depend on the local density of an infected node 3 

for pedestrians. They illustrated that the rate of infection has a non-linear dependence on the 4 

crowd concentration. Using a similar terminology, the rate of infection for an individual vehicle 5 

can be calculated as follows: 6 

localArea =   (3) 

where local  is the local density. Therefore, the local density of traffic needs to be estimated to 7 

construct an approach in order to estimate density-dependent infection rate. In this method, each 8 

infected vehicle can only reach n other vehicles within a predefined radius. The number of 9 

vehicles that can be reached is actually time dependent ( ) ( )n t Area t=  (5). However, a 10 

probability-based spatiotemporal estimation of the local density derived from the two-fluid flow 11 

theory (17) is used in this paper. The two-fluid theory is shown to be specially suitable for urban 12 

scenarios with interrupted traffic flows (17). Since vehicles can send the information within a 13 

predefined radius, the value of R=480 ft. used as the distance that can be reached by the infected 14 

vehicle. The estimated density is valid only for the roadway stretch (vehicles/mile) that the 15 

infected vehicle traverses. The radius is relatively small because we are only interested in the 16 

backward propagation. FIGURE 1 shows the representation of the information flow and the 17 

effective radius. 18 

 19 
FIGURE 1  Representation of the information flow and the effective radius 20 

According to the two-fluid theory (17), the average speed of vehicles depends on the 21 

fraction of the stopping vehicles sf   at high vehicular concentrations. The two-fluid theory states 22 

that the average speed of moving cars ru  relies on the fraction of cars that are moving. 23 
1

m (1 )r su u f += −  (4) 

where mu  is the average maximum speed and   is a transportation network’s level of service 24 

parameter. Although the exact number of stopped vehicles may not be determined in lower CV 25 

penetration levels, the fraction of the stopped vehicles can be reasonably estimated only using 26 

the data coming from the equipped vehicles. Using the two-fluid theory, Artimy (16) suggested 27 

that the normalized local density on a roadway section can be estimated using the equation: 28 
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where /s tT T  is the ratio of the stopping time to total trip time which equals to the fraction of 1 

stopped vehicles, '  is the normalized sensitivity of the vehicle interaction given by 2 

'
m ju





=  (6) 

where j   is the maximum vehicle density. With Eq. 5, it is now possible to estimate the local 3 

density when the values of sf  , mu  , and jk  are known for the section. Our traffic micro-4 

simulations showed that in urban scenarios, the Gaussian distribution fits sf  data fairly well with 5 

parameters 0.36 =  and 0.13 =  according to Eq. 7  6 
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Random /s s tf T T=  values will be generated to find the average local density for given time and 7 

location. The probability density function of the fraction of stopped vehicles is illustrated in 8 

FIGURE 2.  9 

 10 
FIGURE 2  Fitted probability density function of stopped vehicles 11 

The fraction of stopped vehicles can be used as a proxy to estimate local density around 12 

the infected vehicle. Therefore, from an individual infected vehicle’s perspective, the value of 13 

the local density can be calculated as: 14 
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where   is the market penetration level of CVs. Substituting 8 into equation 3 we obtain: 1 
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where c is the penetration level specific correction factor for successful transmissions. The factor 2 

can be calculated with the assumption that there is only one vehicle3 
1
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  in the transmission area. Assuming that the transmission rate is 4 

constant up to 0.1 vehicles/per second (5) and there is a random crossover between constant 5 

transmission rate and density-dependent transmission rate after such value, c will be calculated 6 

as = 0.1/ . 7 

 8 

The Description of the Microscopic Traffic Simulation Model Used for Model Validation 9 

To validate the analytical model, the microscopic traffic simulation software PARAMICS 10 

is used to model urban traffic in the downtown Brooklyn area of New York City.  The traffic 11 

simulation model contains 36 intersections, 22 traffic signals, 19 traffic zones, and 16.35 miles of 12 

roadway.  While creating the network, the actual properties of roadway links such as the signal 13 

timing, length, lane width, number of lanes, and speed limit are also considered. The microscopic 14 

traffic simulation model is calibrated for the AM peak period (7-10AM) using the volume data 15 

collected at most of the intersections on the selected route. The model is also calibrated for travel 16 

time between Tillary Street and Grand Army Plaza (Southbound). FIGURE 3 below illustrates 17 

the study location and the generated traffic simulation model in PARAMICS.  18 

 19 
FIGURE 3  Study location 20 

After calibrating the simulation network, back-ward information propagation is simulated 21 

using vehicle trajectories generated by the micro-simulation software. The assumption in 22 



Kurkcu, Ozbay  10 

 

information dissemination is that at every time step (0.1 seconds), the vehicle can either receive 1 

or send a message. Once the vehicle receives the message from its precedent, it sends it out to the 2 

furthest reachable vehicle in downstream and all the other vehicles within the communication 3 

radius. The first message is generated by a random vehicle traveling on Southbound on Atlantic 4 

Avenue and Flatbush Avenue intersection at a random time step in the simulation. The 5 

information propagates to the first intersection which can be seen in the upper left corner of the 6 

figure. Coupling traffic simulation models with network communication models remains a time-7 

consuming and challenging task. Lack of knowledge in what wireless technology that will be 8 

used, field data, and the parameters that are required to be calibrated for each wireless 9 

communication model make this task particularly complicated. Thus, parameters such as the 10 

message latency and drop rate are assumed to be “0” for simplicity, and these can later be 11 

incorporated into the calculations once reliable results can be retrieved from field tests. A python 12 

code is developed to emulate the information dissemination in the network. It reads the trajectory 13 

file and checks the surrounding vehicles of the informed node downstream and transfers the 14 

information to the furthest vehicle. The next section will show the results obtained from both the 15 

analytical and simulation model. 16 

 17 

Determining the Number of Runs 18 

FIGURE 4 shows the number of runs and the cumulative average information propagation time 19 

with cumulative standard deviation at each point. It shows the importance of the number of 20 

simulation runs in determining the actual average. 21 

 22 
FIGURE 4  Average information dissipation time vs. runs of the model 23 

The number of required simulation runs is determined by using the standard error of the mean 24 

(SEM) in this study. Eq. 10. shows the relationship between the SEM, the variance, and size of 25 

the sample 26 

/ tan  /SEM Variance N S dard deviation N= =  (10) 

Assuming that the values are independent and identically distributed, the number of simulation 27 

runs ±1second variation with 95% confidence based on Eq. 10 would be SEM = 1/1.96 = 0.51. 28 

Estimating the standard deviation from FIGURE 4 as being 2 seconds then the number of runs 29 

can be calculated as 2/sqrt(N) = 0.51. Solving this for N, we can obtain N = 15 runs. For this 30 

study, we used 20 runs to make sure the real mean is achieved with 95% confidence interval. 31 
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FIGURE 5 demonstrates the change in standard deviation between run N and N-1 across 20 runs. 1 

It can be seen that after around 15 runs, the change in standard deviation fluctuates around 0. 2 

 3 

 4 
FIGURE 5  Standard deviation between run N and N-1 5 

NUMERICAL RESULTS 6 

The proposed analytical model’s contact rate estimation results are compared to the results 7 

retrieved from the traffic simulation model in this section. The microscopic traffic simulation 8 

model is run 20 times for each CV market penetration with different seeds totaling up to 280 9 

runs in order to capture the stochastic nature of traffic. It has been observed after 20 runs, the 10 

amount of change in the average value of information dissemination time is less than 5%. The 11 

free flow speed of 30 miles/hour, level of service of 0.72 as suggested for urban scenarios by 12 

(19), and the jam density of 150 vehicles/mile/lane are used in the analytical model to compute 13 

the contact rate. Various market penetration levels from 1 to 100% with 7.1% increments are 14 

used to investigate the effects of CV density on the information dissipation speed. FIGURE 6 15 

shows both of the results obtained from the analytical and simulation model. The average contact 16 

rate value calculated from 20 simulation runs and 20 replications of the analytical model are used 17 

to generate the plot. The average number of vehicles present in the section is taken as 60. Y-axis 18 

shows the time it takes for all vehicles to retrieve information released by the initial vehicle and 19 

X-axis illustrates different market penetration levels. Although the model under or overestimates 20 

the information propagation time for specific market penetration values, the errors lie within a 21 

reasonable range with a mean of 9.6 seconds for higher penetration levels than 20%. 22 

Furthermore, it is worth mentioning that running the microscopic traffic simulation model, 23 

storing trajectories, and calculating contact rates for only one market penetration level takes 24 

more than 5 hours. On the other hand, the analytical model can execute the same task in less than 25 

a second by incorporating the market penetration level as an input. Therefore, using an analytical 26 

model is particularly convenient and computationally fast to analyze various market penetration 27 

levels, and it is possible to conduct a more granular analysis to evaluate the effects of market 28 

penetration on the contact rate.  29 

 30 
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 1 
FIGURE 6  Analytical vs. Simulation Results 2 

FIGURE 7 shows the evolution of the susceptible population over time with a constant 3 

contact rate and a density-based contact rate for commonly used market penetrations for CV 4 

applications particularly 20, 50 and 100%. The susceptible vehicles are the proportion of all 5 

vehicles in traffic that can receive and send information. In other words, the susceptible vehicles 6 

are connected. Once the vehicle receives the information, it is transferred from the susceptible 7 

population to exposed population, and later on to the infected population in the next time step. 8 

To show the relationship in FIGURE 7, it is assumed 100% of the vehicles are susceptible 9 

meaning that the CV market penetration rate is 100%. When the susceptible population becomes 10 

“0”, it means that all the vehicles in the network received the information sent by the initial 11 

vehicle. It can be seen that susceptible population reaches to “0” after 250 seconds for the most 12 

of the density based and the constant contact rates. However, the difference between the curves 13 

shows that the constant contact rate may critically under or over-estimate the speed of the 14 

information dissipation in CV environments. The susceptible population converges to “0” after 15 

1000 seconds in the 20% market penetration contact rate scenario. 16 

 17 
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 1 
FIGURE 7 Evolution of susceptible population 2 

It should be noted that for the scenarios with less than 10% CV penetration levels, the 3 

information never reaches the targeted intersection.  It is safe to assume that with higher levels of 4 

penetration, there will always be a vehicle within a 480-foot radius that can be reached. The 5 

longest distance between two intersections is 489 feet in the simulation network. It is highly 6 

probable for CVs to send the information to another CV that is located at an intersection 7 

downstream when the traffic signal turns to red. 8 

CONCLUSIONS 9 

Information dissemination is critical for safety, mobility and environmental smart city and CV 10 

applications. This study proposes an analytical model to predict the time it takes to transfer 11 

information from an infected node to all the other nodes in a network using an enhanced SIR 12 

model. The existing simulation-based approaches not only require a longer time to execute but 13 

also coding of the target network to run simulations. The analytical approach utilizes a density-14 

based contact rate. This addition results in better understanding of the relationship between 15 

traffic density and information dissemination and the analytical model enables a faster analysis 16 

of information flow in CV applications without the need of creating a simulation network. The 17 

proposed model’s accuracy is tested against the results obtained from a calibrated micro-18 

simulation model. The microscopic traffic simulation software PARAMICS is used to model 19 

urban traffic in the downtown Brooklyn area of New York City. The traffic simulation model is 20 

run for 20 times per market penetration level to reflect the stochastic nature of traffic the best. 21 

The comparative results indicate that the model can predict the information dissemination time 22 

reasonably well for higher market penetration levels than 20%. The results validated that the 23 

approach is efficient for dense urban scenarios with higher traffic densities. It also has been 24 

observed that the density of CVs plays a crucial role in the speed of information dissipation. 25 

Having a reliable estimation of the information propagation speed could be especially useful for 26 

officials to implement adaptive traffic control strategies and estimate the network effects of the 27 
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intended changes over time. As a future work, the traffic generation and removal rate generation 1 

rate will be modeled in a more complex urban network and freeway scenarios.   2 
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